Blaschke products for finite Riemann surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Interpolation by Finite Blaschke Products

Given 2n distinct points z1, z′ 1, z2, z ′ 2, . . . , zn, z ′ n (in this order) on the unit circle, and n points w1, . . . , wn on the unit circle, we show how to construct a Blaschke product B of degree n such that B(zj) = wj for all j and, in addition, B(z′ j) = B(z ′ k) for all j and k. Modifying this example yields a Blaschke product of degree n− 1 that interpolates the zj ’s to the wj ’s. ...

متن کامل

The Location of Critical Points of Finite Blaschke Products

A theorem of Bôcher and Grace states that the critical points of a cubic polynomial are the foci of an ellipse tangent to the sides of the triangle joining the zeros. A more general result of Siebert and others states that the critical points of a polynomial of degree N are the algebraic foci of a curve of class N − 1 which is tangent to the lines joining pairs of zeroes. We prove the analogous...

متن کامل

Finite Euler Products and the Riemann Hypothesis

Abstract. We show that if the Riemann Hypothesis is true, then in a region containing most of the right-half of the critical strip, the Riemann zeta-function is well approximated by short truncations of its Euler product. Conversely, if the approximation by products is good in this region, the zeta-function has at most finitely many zeros in it. We then construct a parameterized family of non-a...

متن کامل

Computable Analysis and Blaschke Products

We show that if a Blaschke product defines a computable function, then it has a computable sequence of zeros in which the number of times each zero is repeated is its multiplicity. We then show that the converse is not true. We finally show that every computable, radial, interpolating sequence yields a computable Blaschke product.

متن کامل

Generalized Riemann minimal surfaces examples in three-dimensional manifolds products

In this paper, we construct and classify minimal surfaces foliated by horizontal constant curvature curves in M × R, where M is H, R or S. The main tool is the existence of a so called ”Shiffman” Jacobi field which characterize the property to be foliated in circles in these product manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1970

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-34-2-169-176