Blaschke products for finite Riemann surfaces
نویسندگان
چکیده
منابع مشابه
Boundary Interpolation by Finite Blaschke Products
Given 2n distinct points z1, z′ 1, z2, z ′ 2, . . . , zn, z ′ n (in this order) on the unit circle, and n points w1, . . . , wn on the unit circle, we show how to construct a Blaschke product B of degree n such that B(zj) = wj for all j and, in addition, B(z′ j) = B(z ′ k) for all j and k. Modifying this example yields a Blaschke product of degree n− 1 that interpolates the zj ’s to the wj ’s. ...
متن کاملThe Location of Critical Points of Finite Blaschke Products
A theorem of Bôcher and Grace states that the critical points of a cubic polynomial are the foci of an ellipse tangent to the sides of the triangle joining the zeros. A more general result of Siebert and others states that the critical points of a polynomial of degree N are the algebraic foci of a curve of class N − 1 which is tangent to the lines joining pairs of zeroes. We prove the analogous...
متن کاملFinite Euler Products and the Riemann Hypothesis
Abstract. We show that if the Riemann Hypothesis is true, then in a region containing most of the right-half of the critical strip, the Riemann zeta-function is well approximated by short truncations of its Euler product. Conversely, if the approximation by products is good in this region, the zeta-function has at most finitely many zeros in it. We then construct a parameterized family of non-a...
متن کاملComputable Analysis and Blaschke Products
We show that if a Blaschke product defines a computable function, then it has a computable sequence of zeros in which the number of times each zero is repeated is its multiplicity. We then show that the converse is not true. We finally show that every computable, radial, interpolating sequence yields a computable Blaschke product.
متن کاملGeneralized Riemann minimal surfaces examples in three-dimensional manifolds products
In this paper, we construct and classify minimal surfaces foliated by horizontal constant curvature curves in M × R, where M is H, R or S. The main tool is the existence of a so called ”Shiffman” Jacobi field which characterize the property to be foliated in circles in these product manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1970
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-34-2-169-176